福师《概率论》在线作业二
共50道题 总分:100分
一、单选题(共50题,100分)
1.设X与Y是相互独立的两个随机变量,X的分布律为:X=0时,P=0.4;X=1时,P=0.6。Y的分布律为:Y=0时,P=0.4,Y=1时,P=0.6。则必有( )
A、X=Y
B、P{X=Y}=0.52
C、P{X=Y}=1
D、P{X#Y}=0
2.设随机变量的数学期望E(ξ)=μ,均方差为σ,则由切比雪夫不等式,有{P(|ξ-μ|≥3σ)}≤( )
A、1/9
B、1/8
C、8/9
D、7/8
3.袋中有4个白球,7个黑球,从中不放回地取球,每次取一个球.则第二次取出白球的概率为 ( )
A、4/10
B、3/10
C、3/11
D、4/11
4.下列数组中,不能作为随机变量分布列的是( ).
A、1/3,1/3,1/6,1/6
B、1/10,2/10,3/10,4/10
C、1/2,1/4,1/8,1/8
D、1/3,1/6,1/9,1/12
5.一部10卷文集,将其按任意顺序排放在书架上,试求其恰好按先后顺序排放的概率( ).
A、2/10!
B、1/10!
C、4/10!
D、2/9!
福师答案请进:opzy.net或请联系微信:1095258436
6.设g(x)与h(x)分别为随机变量X与Y的分布函数,为了使F(x)=ag(x)-bh(x)是某一随机变量的分布函数,在下列各组值中应取( )
A、a=3/5 b=-2/5
B、a=-1/2 b=3/2
C、a=2/3 b=2/3
D、a=1/2 b=-2/3
7.炮弹爆炸时产生大、中、小三块弹片。大、中、小三块弹片打中某距离的装甲车的概率分别等于0.1,0.2,0.4。当大、中、小三块弹片打中装甲车时其打穿装甲车的概率分别为0.9,0.5,0.01。今有一装甲车被一块炮弹弹片打穿(在上述距离),则装甲车是被大弹片打穿的概率是( )
A、0.761
B、0.647
C、0.845
D、0.464
8.如果随机变量X服从标准正态分布,则Y=-X服从( )
A、标准正态分布
B、一般正态分布
C、二项分布
D、泊淞分布
9.袋中有4白5黑共9个球,现从中任取两个,则这少一个是黑球的概率是
A、1/6
B、5/6
C、4/9
D、5/9
10.某门课只有通过口试及笔试两种考试方可结业。某学生通过口试的概率为80%,通过笔试的概率为65%。至少通过两者之一的概率为75%,问该学生这门课结业的可能性为( )
A、0.6
B、0.7
C、0.3
D、0.5
11.把一枚质地均匀的硬币连续抛三次,以X表示在三次中出现正面的次数,Y表示在三次中出现正面的次数与出现反面的次数的差的绝对值,则{X=2,Y=1}的概率为( )
A、1/8
B、3/8
C、3/9
D、4/9
12.袋内装有5个白球,3个黑球,从中一次任取两个,求取到的两个球颜色不同的概率
A、15/28
B、3/28
C、5/28
D、8/28
13.两个互不相容事件A与B之和的概率为
A、P(A)+P(B)
B、P(A)+P(B)-P(AB)
C、P(A)-P(B)
D、P(A)+P(B)+P(AB)
14.假设一厂家一条自动生产线上生产的每台仪器以概率0.8可以出厂,以概率0.2需进一步调试,经调试后,以概率0.75可以出厂,以概率0.25定为不合格品而不能出厂。现该厂新生产了十台仪器(假设各台仪器的生产过程相互独立),则十台仪器中能够出厂的仪器期望值为( )
A、9.5
B、6
C、7
D、8
15.利用样本观察值对总体未知参数的估计称为( )
A、点估计
B、区间估计
C、参数估计
D、极大似然估计
16.现考察某个学校一年级学生的数学成绩,现随机抽取一个班,男生21人,女生25人。则样本容量为( )
A、2
B、21
C、25
D、46
17.如果随机变量X和Y满足D(X+Y)=D(X-Y),则下列式子正确的是( )
A、X与Y相互独立
B、X与Y不相关
C、DY=0
D、DX*DY=0
18.点估计( )给出参数值的误差大小和范围
A、能
B、不能
C、不一定
D、以上都不对
19.设随机变量X服从正态分布,其数学期望为10,X在区间(10,20)发生的概率等于0.3。则X在区间(0,10)的概率为( )
A、0.3
B、0.4
C、0.5
D、0.6
20.电话交换台有10条外线,若干台分机,在一段时间内,每台分机使用外线的概率为10%,则最多可装( )台分机才能以90%的把握使外线畅通
A、59
B、52
C、68
D、72
21.一个工人照看三台机床,在一小时内,甲、乙、丙三台机床需要人看管的概率分别是0.8,0.9和0.85,求在一小时内没有一台机床需要照看的概率( )
A、0.997
B、0.003
C、0.338
D、0.662
22.在1,2,3,4,5这5个数码中,每次取一个数码,不放回,连续取两次,求第1次取到偶数的概率( )
A、3/5
B、2/5
C、3/4
D、1/4
23.下列集合中哪个集合是A={1,3,5}的子集
A、{1,3}
B、{1,3,8}
C、{1,8}
D、{12}
24.设X,Y为两个随机变量,已知cov(X,Y)=0,则必有()。
A、X与Y相互独立
B、D(XY)=DX*DY
C、E(XY)=EX*EY
D、以上都不对
25.在区间(2,8)上服从均匀分布的随机变量的方差为( )
A、2
B、3
C、4
D、5
26.设随机变量X与Y相互独立,D(X)=2,D(Y)=4,D(2X-Y)=
A、12
B、8
C、6
D、18
27.三人独立破译一密码,他们能单独译出的概率分别为1/5,1/3,1/4,则此密码被译出的概率是
A、2/5
B、3/4
C、1/5
D、3/5
28.一台设备由10个独立工作折元件组成,每一个元件在时间T发生故障的概率为0.05。设不发生故障的元件数为随即变量X,则借助于契比雪夫不等式来估计X和它的数学期望的离差小于2的概率为( )
A、0.43
B、0.64
C、0.88
D、0.1
29.在条件相同的一系列重复观察中,会时而出现时而不出现,呈现出不确定性,并且在每次观察之前不能确定预料其是否出现,这类现象我们称之为
A、确定现象
B、随机现象
C、自然现象
D、认为现象
30.事件A与B相互独立的充要条件为
A、A+B=Ω
B、P(AB)=P(A)P(B)
C、AB=Ф
D、P(A+B)=P(A)+P(B)
31.设A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为 ( )
A、“甲种产品滞销或乙种产品畅销”;
B、“甲种产品滞销”;
C、“甲、乙两种产品均畅销”;
D、“甲种产品滞销,乙种产品畅销”.
32.已知P(A)=0.3,P(B)=0.4,P(AB)=0.2,则P(B|A)=________.
A、1/3
B、2/3
C、1/2
D、3/8
33.现有一批种子,其中良种占1/6,今任取6000粒种子,则以0.99的概率推断,在这6000粒种子中良种所占的比例与1/6的差是( )
A、0.0124
B、0.0458
C、0.0769
D、0.0971
34.已知全集为{1,3,5,7},集合A={1,3},则A的对立事件为
A、{1,3}
B、{1,3,5}
C、{5,7}
D、{7}
35.设随机变量X~N(0,1),Y=3X+2,则Y服从()分布。
A、N(2,9)
B、N(0,1)
C、N(2,3)
D、N(5,3)
36.设随机变量X和Y的方差存在且不等于0,则D(X+Y)=D(X)+D(Y)是X和Y( )
A、不相关的充分条件,但不是必要条件
B、独立的充分条件,但不是必要条件
C、不相关的充分必要条件
D、独立的充要条件
37.事件A={a,b,c},事件B={a,b},则事件A+B为
A、{a}
B、{b}
C、{a,b,c}
D、{a,b}
38.在参数估计的方法中,矩法估计属于( )方法
A、点估计
B、非参数性
C、A、B极大似然估计
D、以上都不对
39.设两个随机变量X与Y相互独立且同分布;P{X=-1}=P{Y=-1}=1/2,P{X=1}=P{Y=1}=1/2,则下列各式中成立的是()。
A、P{X=Y}=1/2
B、P{X=Y}=1
C、P{X+Y=0}=1/4
D、P{XY=1}=1/4
40.投掷n枚骰子,则出现的点数之和的数学期望是
A、5n/2
B、3n/2
C、2n
D、7n/2
41.对于任意两个事件A与B,则有P(A-B)=().
A、P(A)-P(B)
B、P(A)-P(B)+P(AB)
C、P(A)-P(AB)
D、P(A)+P(AB)
42.200个新生儿中,男孩数在80到120之间的概率为( ),假定生男生女的机会相同
A、0.9954
B、0.7415
C、0.6847
D、0.4587
43.市场供应的某种商品中,甲厂生产的产品占50%,乙厂生产的产品占30%,丙厂生产的产品占 20%,甲、乙、丙产品的合格率分别为90%、85%、和95%,则顾客买到这种产品为合格品的概率是( )
A、0.24
B、0.64
C、0.895
D、0.985
44.安培计是以相隔0.1为刻度的,读数时选取最靠近的那个刻度,允许误差为0.02A,则超出允许误差的概率是( )
A、0.4
B、0.6
C、0.2
D、0.8
45.相继掷硬币两次,则样本空间为
A、Ω={(正面,反面),(反面,正面),(正面,正面),(反面,反面)}
B、Ω={(正面,反面),(反面,正面)}
C、{(正面,反面),(反面,正面),(正面,正面)}
D、{(反面,正面),(正面,正面)}
46.某车队里有1000辆车参加保险,在一年里这些车发生事故的概率是0.3%,则这些车在一年里恰好有10辆发生事故的概率是( )
A、0.0008
B、0.001
C、0.14
D、0.541
47.在长度为a的线段内任取两点将其分成三段,则它们可以构成一个三角形的概率是
A、1/4
B、1/2
C、1/3
D、2/3
48.从0到9这十个数字中任取三个,问大小在中间的号码恰为5的概率是多少?
A、1/5
B、1/6
C、2/5
D、1/8
49.对以往的数据分析结果表明当机器调整得良好时,产品的合格率为 90% , 而当机器发生某一故障时,其合格率为 30% 。每天早上机器开动时,机器调整良好的概率为 75% 。已知某天早上第一件产品是合格品,试求机器调整得良好的概率是多少?
A、0.8
B、0.9
C、0.75
D、0.95
50.从a,b,c,d,…,h等8个字母中任意选出三个不同的字母,则三个字母中不含a与b的概率( )
A、14/56
B、15/56
C、9/14
D、5/14